0x00 什么是树回归?

这里用到的是叫做CART(Classification And Regression Trees)的算法。


简单说就是把散点的数据聚成一团一团(跟聚类是两码事),然后用树的方式记录它们的位置。如果在树的构建时加入线性回归能得到更好的结果。

  • 优点:可以对复杂和非线性的数据建模。
  • 缺点:结果不易理解。
  • 适用数据范围:数值型和标量型。

0x01 构建树

def binSplitDataSet(dataSet, feature, value):
    #nonzero()会返回两个array,分别记录非零的行与列
    mat0 = dataSet[nonzero(dataSet[:,feature] > value)[0],:]
    mat1 = dataSet[nonzero(dataSet[:,feature] <= value)[0],:]
    return mat0,mat1

def regLeaf(dataSet):#returns the value used for each leaf
    return mean(dataSet[:,-1])

def regErr(dataSet):
    return var(dataSet[:,-1]) * shape(dataSet)[0]

def chooseBestSplit(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):
    tolS = ops[0]; tolN = ops[1]
    #if all the target variables are the same value: quit and return value
    if len(set(dataSet[:,-1].T.tolist()[0])) == 1: #exit cond 1
        return None, leafType(dataSet)
    m,n = shape(dataSet)
    #the choice of the best feature is driven by Reduction in RSS error from mean
    S = errType(dataSet)
    bestS = inf; bestIndex = 0; bestValue = 0
    for featIndex in range(n-1):
        for splitVal in set(dataSet[:,featIndex]):
            mat0, mat1 = binSplitDataSet(dataSet, featIndex, splitVal)
            if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN): continue
            newS = errType(mat0) + errType(mat1)
            if newS < bestS: 
                bestIndex = featIndex
                bestValue = splitVal
                bestS = newS
    #if the decrease (S-bestS) is less than a threshold don't do the split
    if (S - bestS) < tolS: 
        return None, leafType(dataSet) #exit cond 2
    mat0, mat1 = binSplitDataSet(dataSet, bestIndex, bestValue)
    if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN):  #exit cond 3
        return None, leafType(dataSet)
    return bestIndex,bestValue#returns the best feature to split on
                              #and the value used for that split

def createTree(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):#assume dataSet is NumPy Mat so we can array filtering
    feat, val = chooseBestSplit(dataSet, leafType, errType, ops)#choose the best split
    if feat == None: return val #if the splitting hit a stop condition return val
    retTree = {}
    retTree['spInd'] = feat
    retTree['spVal'] = val
    lSet, rSet = binSplitDataSet(dataSet, feat, val)
    retTree['left'] = createTree(lSet, leafType, errType, ops)
    retTree['right'] = createTree(rSet, leafType, errType, ops)
    return retTree  

关键在于chooseBestSplit()函数。该函数计算了在何种分类情况下分类结果与训练数据的误差最小。

0x02 树剪枝

当数据值差距较大时,可能出现分支过多的情况,也就是过拟合。对此,能使用预剪枝和后剪枝的方式来处理。


预剪枝在上面的代码中已经用到了,其实就是设置每个分支最少样本数和最大允许误差的过程。

def chooseBestSplit(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4))

如果设置样本数过少,那么就容易造成过拟合。


然后是后剪枝的操作:

def isTree(obj):
    return (type(obj).__name__=='dict')

def getMean(tree):
    if isTree(tree['right']): tree['right'] = getMean(tree['right'])
    if isTree(tree['left']): tree['left'] = getMean(tree['left'])
    return (tree['left']+tree['right'])/2.0
    
def prune(tree, testData):
    if shape(testData)[0] == 0: return getMean(tree) #if we have no test data collapse the tree
    if (isTree(tree['right']) or isTree(tree['left'])):#if the branches are not trees try to prune them
        lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])
    if isTree(tree['left']): tree['left'] = prune(tree['left'], lSet)
    if isTree(tree['right']): tree['right'] =  prune(tree['right'], rSet)
    #if they are now both leafs, see if we can merge them
    if not isTree(tree['left']) and not isTree(tree['right']):
        lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])
        errorNoMerge = sum(power(lSet[:,-1] - tree['left'],2)) +\
            sum(power(rSet[:,-1] - tree['right'],2))
        treeMean = (tree['left']+tree['right'])/2.0
        errorMerge = sum(power(testData[:,-1] - treeMean,2))
        if errorMerge < errorNoMerge: 
            print "merging"
            return treeMean
        else: return tree
    else: return tree

主要思想是如果两个分支合并后误差比未合并小,那么久合并两个分支。

0x03 模型树

现在对代码做部分改动,把每个节点由原来的平局值,换成线性回归的回归系数,达到一个更好的拟合效果。

def linearSolve(dataSet):   #helper function used in two places
    m,n = shape(dataSet)
    X = mat(ones((m,n))); Y = mat(ones((m,1)))#create a copy of data with 1 in 0th postion
    X[:,1:n] = dataSet[:,0:n-1]; Y = dataSet[:,-1]#and strip out Y
    xTx = X.T*X
    if linalg.det(xTx) == 0.0:
        raise NameError('This matrix is singular, cannot do inverse,\n\
        try increasing the second value of ops')
    ws = xTx.I * (X.T * Y)
    return ws,X,Y

def modelLeaf(dataSet):#create linear model and return coeficients
    ws,X,Y = linearSolve(dataSet)
    return ws

def modelErr(dataSet):
    ws,X,Y = linearSolve(dataSet)
    yHat = X * ws
    return sum(power(Y - yHat,2))

0x04 预测代码

def regTreeEval(model, inDat):
    return float(model)

def modelTreeEval(model, inDat):
    n = shape(inDat)[1]
    X = mat(ones((1,n+1)))
    X[:,1:n+1]=inDat
    return float(X*model)

def treeForeCast(tree, inData, modelEval=regTreeEval):
    if not isTree(tree): return modelEval(tree, inData)
    if inData[tree['spInd']] > tree['spVal']:
        if isTree(tree['left']): return treeForeCast(tree['left'], inData, modelEval)
        else: return modelEval(tree['left'], inData)
    else:
        if isTree(tree['right']): return treeForeCast(tree['right'], inData, modelEval)
        else: return modelEval(tree['right'], inData)
        
def createForeCast(tree, testData, modelEval=regTreeEval):
    m=len(testData)
    yHat = mat(zeros((m,1)))
    for i in range(m):
        yHat[i,0] = treeForeCast(tree, mat(testData[i]), modelEval)
    return yHat